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Abstract In this paper, we propose an importance-sampling based method to obtain
an unbiased simulator to evaluate expectations involving random variables whose
probability density functions are unknown while their Fourier transforms have an
explicit form. We give a general principle about how to choose appropriate importance
samplers under different models. Compared with the existing methods, our method
avoids time-consuming numerical Fourier inversion and can be applied effectively
to high dimensional financial applications such as option pricing and sensitivity
estimation under Heston stochastic volatility model, high dimensional affine jump-
diffusion model, and various Levy processes.

1 Introduction

Nowadays there are three main techniques for option pricing in finance: Monte Carlo,
PDE and Fourier transform methods. The use of Monte Carlo technique in option
pricing has a long history going back to Boyle [2] and we refer to Glasserman [7] for
an overview. In the case of Lévy-driven models, a basic building block of any Monte-
Carlo method is the simulation of the increments of the underlying Lévy process. In
some situations - for instance, for the Variance Gamma model - the process can be
expressed in terms of subordinated Brownian motion, and hence its increments can
be simulated (almost) exactly. However, in other cases no exact simulation algorithm
is known. If our aim is to compute some expectation with respect to the distribution
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of the Lévy increments, we can use the so-called Fourier transform approach. Since
the seminal work of Carr and Madan [3] Fourier techniques have become well-
established in computational finance to efficiently price financial instruments, like
European, Asian, multi-asset or barrier options. Recently, Biagini et al. [1] and
Hurd and Zhou [8] extend the Fourier method to price options on several assets,
considering basket options, spread options and catastrophe insurance derivatives.
The Fourier methods belong to the class of numerical integration methods and such
they are limited to low dimensional distributions. In this paper we propose a novel
approach for computing high-dimensional integrals with respect to distributions with
explicitly known Fourier transforms based on the ge! nuine combination of Fourier
and Monte Carlo techniques. In order to illustrate the main idea of our approach,
let us first consider a simple problem of computing expectations with respect to
one-dimensional stable distributions. Let pα(x) be the density of a random variable
X having a symmetric stable law with the stability parameter α ∈ (0,2), i.e.,

F [pα ](u) = exp(−|u|α).

Suppose we want to compute the expectation Q = E[g(X)] for some nonnegative
function g. Since there are several algorithms of sampling from stable distribution
(see, e.g. [4]), we could use Monte Carlo to construct the estimate

Qn =
1
n

n

∑
i=1

g(Xi),

where X1, . . . ,Xn is an i.i.d. sample from the corresponding α-stable distribution.
Take, for example, g(x) = (max{x,0})β with some β ∈ (0,α), then we have by the
Parseval’s identity

E[g(X)] =
∫

∞

−∞

g(x)
x

[x · pα(x)]dx

=
α

π

∫
∞

0
uα−1 exp(−uα)Im [F [g(·)/·](u)] du,

=
α Γ (β )sin(βπ/2)

π

∫
∞

0
uα−β−1 exp(−uα)du

provided α > 1. This means that E[g(X)] = E[g′(X ′)], where X ′ has a power expo-
nential distribution with the density

fα(x) =
1

Γ (1+1/α)
exp(−xα)

and g′(x) = C(α,β )|x|α−β−1 with C(α,β ) = Γ (1/α)Γ (β )sin(βπ/2)
π

. In particular, if
β = α−1, then Var[g(X)]> B(2−α)−1 for some B > 0 not depending on α, while
Var[g′(X ′)] = 0. This shows that even in the above very simple situation, moving to
the Fourier domain can significantly reduce the variance of Monte Carlo estimates.
More importantly, by using our approach, we replace the problem of sampling from
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the stable distribution pα by a much simpler problem of drawing from the exponential
power distribution fα . Of course, the main power of Monte Carlo methods can be
observed in high-dimensional integration problems, which will be considered in the
next section.

2 General framework

Let g be a real-valued function on Rd and let p be a probability density on Rd . Our
aim is to compute the integral of g with respect to p :

V =
∫
Rd

g(x)p(x)dx.

Suppose that there is a vector R ∈ Rd , such that

g(x)e−〈x,R〉 ∈ L1(Rd), f (x)e〈x,R〉 ∈ L1(Rd),

then we have by the Parseval’s formula

V =
1

(2π)d

∫
Rd

F [g](iR−u)F [p](u− iR)du. (1)

Let q be a probability density function with the property that q(x) = 0 whenever
|F [p](u− iR)|= 0. That is, q has the same support as |F [p](u− iR)|. Then we can
write

V =
1

(2π)d

∫
Rd

F [g](iR−u)
F [p](u− iR)

q(u)
q(u)du = Eq [h(X)] , (2)

where

h(x) =
1

(2π)d F [g](iR− x)
F [p](x− iR)

q(x)
.

and X is a random variable distributed according to q. The variance of the corre-
sponding Monte Carlo estimator is given by

Varq[h(X)] =

(
1

2π

)2d ∫
Rd
|F [g](iR−u)|2 |F [p](u− iR)|2

q(u)
du−V 2.

Note that the function |F [p](iR−u)| is, up to a constant, a probability density and in
order to minimize the variance, we need to find a density q, that minimizes the ratio
|F [p](u−iR)|

q(u) and that we are able to simulate from. In the next section, we discuss how
to get a tight upper bound for |F [p](iR− u)| in the case of an infinitely divisible
distribution p, corresponding to the marginal distributions of Lévy processes. Such
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a bound can be then used to find a density q leading to small values of variance
Varq[h(X)].

3 Lévy processes

Let (Zt) be a pure jump d-dimensional Levy process with the characteristic exponent
ψ, that is

E
[
ei〈u,Zt 〉

]
= e−tψ(u), u ∈ Rd .

Consider the process Xt = ΛZt , where Λ is a real m×d matrix. Let a vector R ∈ Rm

be such that νR(dz) .
= e〈Λ

∗R,z〉ν(dz) is again a Lévy measure, i.e.∫ (
|z|2∧1

)
νR(dz)< ∞.

Suppose that there exist a constant Cν > 0 and a real number α ∈ (0,2), such that,
for sufficiently small ρ > 0, the following estimate holds∫

{z∈R:|〈z,h〉|≤ρ}
〈z,h〉2 νR(dz)≥Cν ρ

2−α , h ∈ Rd , |h|= 1. (3)

Lemma 1. Suppose that (3) holds, then there exists constant AR > 0 such that, for
any u ∈ Rm and sufficiently large |Λ ∗u|,

|φt(u− iR)| ≤ AR exp
(
−2tCν

π2 |Λ
∗u|α

)
,

where φt(z)
.
= E

[
ei〈z,Xt 〉

]
.

Proof. For any u ∈ Rm, we have

|φt(u− iR)| = exp
(
−t
∫
Rd

[
1− e〈Λ

∗R,z〉 cos(〈Λ ∗u,z〉)+ 〈Λ ∗R,z〉1{|z|≤1}

]
ν(dz)

)
= exp

(
−t
∫
Rd

[
1− e〈Λ

∗R,z〉+ 〈Λ ∗R,z〉1{|z|≤1}

]
ν(dz)

)
×exp

(
−t
∫
Rd

[
e〈Λ

∗R,z〉 {1− cos(〈Λ ∗u,z〉)}
]

ν(dz)
)

= AR exp
(
−t
∫
Rd
{1− cos(〈Λ ∗u,z〉)} νR(dz)

)
,

where

AR = exp
(

t
∫
Rd

(
e〈Λ

∗R,z〉−1−〈Λ ∗R,z〉1{|z|≤1}

)
ν(dz)

)
< ∞,
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since∣∣∣e〈Λ∗R,z〉−1−〈Λ ∗R,z〉1{|z|≤1}

∣∣∣≤C1(Λ
∗R) |z|2 1{|z|≤1}+C2(Λ

∗R)e〈Λ
∗R,z〉1{|z|>1}.

First, note that the condition (3) is equivalent to the following one∫
{z∈R:|〈z,k〉|≤1}

〈z,k〉2 νR(dz)≥Cν |k|α ,

for sufficiently large k ∈ Rd , say |k| ≥ c0. To see this, it is enough to change in (3)
the vector h to the vector ρk. Fix u ∈Rm with |u| ≥ 1 and |Λ ∗u| ≥ c0, then using the
inequality 1− cos(x)≥ 2

π2 |x|2, |x| ≤ π, we find∫
Rd

(1− cos(〈Λ ∗u,z〉)) νR(dz) ≥ 2
π2

∫
{z∈R:|〈Λ∗u,z〉|≤1}

〈Λ ∗u,z〉2 νR(dz)

≥ 2Cν

π2 |Λ
∗u|α .

Discussion

Let us comment on the condition (3) (for simplicity we take R = 0). Clearly, if (Zt)
is a d-dimensional α-stable process which is rotation invariant (ψ(h) = cα |h|α , for
h ∈ Rd), then (3) holds. Consider now general α-stable processes. It is known that Z
is α-stable if and only if its components Z1, . . . ,Zd are α-stable and if the Levy C
copula of Z is homogeneous of order 1, i.e.

C (r ·ξ1, . . . ,r ·ξd) = rC (ξ1, . . . ,ξd)

for all ξ = (ξ1, . . . ,ξd) ∈ Rd and r > 0. As an example of such homogeneous Levy
copula one can consider

C (ξ1, . . . ,ξd) = 22−d

(
d

∑
j=1

∣∣ξ j
∣∣−θ

)−1/θ (
η1ξ1·...·ξd≥0− (1−η)1ξ1·...·ξd<0

)
,

where θ > 0 and η ∈ [0,1]. If the marginal tail integrals given by

Π j(x j) = ν (R, . . . ,I (x j), . . .R)sgn(x j)

with

I (x) =

{
(x,∞), x≥ 0,
(−∞,x], x < 0,

are absolutely continuous, we can compute the Lévy measure ν for the Lévy copula
C by differentiation as follows:
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ν(dx1, . . . ,dxd) = ∂1 . . .∂d C |
ξ1=Π1(x1),...,ξd=Πd(xd)

ν1(dx1) · . . . ·νd(dxd),

where ν1(dx1), . . . ,νd(dxd) are the marginal Lévy measures. Suppose that the
marginal Lévy measures are absolutely continuous with a stable-like behaviour:

ν j(dx j) = k j(x j)dx j =
l j(|x j|)
|x j|1+α

dx j, j = 1, . . . ,d,

where l1, . . . , ld are some nonnegative bounded nonincreasing functions on [0,∞)
with l j(0)> 0 and α ∈ [0,2]. Then

ν(dx1, . . . ,dxd) = G(Π1(x1), . . . ,Πd(xd))k1(x1) · . . . · kd(xd)dx1 . . .dxd

with G(ξ1, . . . ,ξd) = ∂1 . . .∂d C |
ξ1...,ξd

. Note that for any r > 0,

k j(rx j) = r−1−α k j(x j,r), Π j(rx j) = r−α
Π j(x j,r), j = 1, . . . ,d,

where

k j(x j,r) =
l j(rx j)

|x j|1+α
, Π j(x j,r) = 1{x j≥0}

∫
∞

x j

k j(s,r)ds+1{x j<0}

∫ x j

−∞

k j(s,r)ds.

Since the function G is homogeneous with order 1−d, we get for ρ ∈ (0,1),∫
{z∈R:|〈z,h〉|≤ρ}

〈z,h〉2 ν(dz) = ρ
2−α

∫
{z∈R:|〈y,h〉|≤1}

〈y,h〉2G
(
Π 1(y1,ρ), . . . ,Π d(yd ,ρ)

)
k1(y1,ρ) · . . . · kd(yd ,ρ)dy1 . . .dyd

≥ ρ
2−α

∫
{z∈R:|〈y,h〉|≤1}

〈y,h〉2G
(
Π 1(y1,1), . . . ,Π d(yd ,1)

)
k1(y1,1) · . . . · kd(yd ,1)dy1 . . .dyd

and the condition (3) holds, provided

inf
h: |h|=1

∫
{z∈R:|〈z,h〉|≤1}

〈z,h〉2 ν(dz)> 0.

If for some R = (R1, . . . ,Rd) the fucntions exRi li(x), i = 1, . . . ,d, are bounded, the
condition (3) holds for νR(dz) .

= e〈R,z〉ν(dz).

4 Positive definite densities

Let p be a probability density on Rd , which is positive definite. For example, all
symmetric infinite divisible absolute continuous distributions have positive definite
densities. Let furthermore g be a nonnegative integrable function on Rd . Suppose
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that we want to compute the expectation

V = Ep[g(X)] =
∫
Rd

g(x)p(x)dx.

We have by the Parseval’s identity

V =
1

(2π)d

∫
Rd

F [g](x)F [p](x)dx.

Note that p∗(x) = F [p](x)/((2π)d p(0)) is a probability density and therefore we
have another “dual” representation for V : (Remark: Dividing by (2π)d) makes p∗ a
density)

V = Ep∗[g∗(X)]

with g∗(x) = p(0)F [g](x). Let us compare the variances of the random variables
g(X) under X ∼ p and g∗(X) under X ∼ p∗. It holds

Varp[g(X)] =
∫
Rd

g2(x)p(x)dx−V 2

and

Varp∗[g∗(X)] =
p(0)
(2π)d

∫
Rd
|F [g](x)|2 F [p](x)dx−V 2

= p(0)
∫
Rd
(g?g)(x)p(x)dx−V 2,

where
(g?g)(x) =

∫
g(x+ y)g(y)dy.

As a result,

Varp[g(X)]−Varp∗[g∗(X)] =
∫
Rd

[
g2(x)− p(0)(g?g)(x)

]
p(x)dx.

Note that if p(0)> 0 is small, then it is likely that Varp[g(X)]> Varp∗[g∗(X)]. This
means that estimating V under p∗ with Monte Carlo can be viewed as a variance
reduction method in this case. Apart from the variance reduction effect, the density
p∗ may have in many cases (for example, for infinitely divisible distributions) much
simpler form than p and therefore is easy to simulate from.
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5 Numerical examples

European Call option under CGMY model

The CGMY process (Xt) with drift µ is a pure jump Lévy with the Lévy measure

νCGMY(x) =C
[

exp(Gx)
|x|1+Y 1x<0 +

exp(−Mx)
x1+Y 1x>0

]
, C,G,M > 0, 0 < Y < 2.

As can be easily seen, the Lévy measure νCGMY satisfies the condition (3) with
α = Y. The characteristic function of XT is given by

φ(u) = E[eiuXT ] = exp
{

iµuT +TCΓ (−Y )[(M− iu)Y −MY +(G+ iu)Y −GY ]
}
,

where µ = r−CΓ (−Y )[(M−1)Y −MY +(G+1)Y −GY ensures that (e−rT eXT ) is
a martingale. Suppose the stock price follows the model

St = S0eXt ,

then due to (1), for any R > 1, the price of the European call option is given by

e−rTE[(ST −K)+] =
e−rT

2π

∫
F [g](iR−u)F [p](u− iR)du, (4)

where

F [g](iR−u) =
K1−Re−iu lnK

(iu+R−1)(iu+R)
, F [p](u− iR) = ei(u−iR) lnS0 ·E[ei(u−iR)XT ].

(Remark: Sorry the original expression is its conjugate.)
Lemma 1 implies

|F [p](u− iR)| ≤ Ae−
|u|α

θ

for α ≤ Y, some A > 0, θ > 0 and large enough u. So we can use the exponential
power density

q(u) =
1

2θ
1
α Γ (1+ 1

α
)

e−
|u|α

θ

as the important sampler in (2), where the parameter θ can be chosen by minimizing
the simulated second moment. Feng, [6] used the parameters C = 1, G = 5, M =
5, Y = 0.5 to calculate the price of the European call option via numerical inversion
of the corresponding characteristic function. The obtained option price was 19.8129.
Our numerical results are shown in Table 1.
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Table 1 Call option in CGMY model, exponential power IS (R = 4.5,α = 0.49,θ = 0.4)

No. of simulation Price 95%-interval RMSE Time(s)
100,000 19.8156 [19.7793,19.8520] 0.0086 0.08
400,000 19.8109 [19.7927,19.8292] 0.0093 0.29

1,600,000 19.8127 [19.8036,19.8218] 0.0046 1.19

European Put option under NIG model

The Normal Inverse Gaussian Lévy process can be constructed by subordinating BM
with an Inverse Gaussian process:

Xt(α,β ,δ ) = βTt(ν ,δ )+W (Tt(ν ,δ )),

where α =
√

β 2 +ν2 and Tt(ν ,δ ) is the Inverse Gaussian Lévy process defined by
Tt(ν ,δ ) = inf{s > 0 : νs+Bs = δ t}. We have

E[eiuXt ] = exp
(

δ t
[√

α2−β 2−
√

α2− (β + iu)2
])

and the corresponding Lévy measure νNIG fulfils the condition (3) with α = 1.
Suppose the stock price is modelled by

St = S0eat+Xt ,

where the choice a= r−q−δ (
√

α2−β 2−
√

α2− (β +1)2) ensures the martingale
condition. Then for any R < 0, the price of European put option is given by

e−rTE[(K−ST )
+] =

e−rT

2π

∫
F [g](iR−u)F [p](u− iR)du,

where

F [g](iR−u)=
K1−Re−iu lnK

(iu+R−1)(iu+R)
, F [p](u−iR)= ei(u−iR)(lnS0+aT ) ·E[ei(u−iR)XT ].

Lemma 1 implies that one can use the Laplace density

q(u) =
1

2θ
e−
|u|
θ

as the important sampler, where the parameter θ can be chosen by minimizing the
simulated second moment. Chen, Feng and Lin [5] used parameters α = 15, β =
−5, δ = 0.5, r = 0.03, S0 =K = 100, T = 0.5 to calculate the price of the European
put option and obtained the value 4.5898. Table 2 shows numerical results with the
same parameters and compares the RMSE and the computational time of our method
with that of the method direct simulating the subordinator.
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Table 2 Put option in NIG model, Exponential power IS (R = 9.3, θ = 2.4)

No. of simulation Price 95%-interval RMSE Time RMSE (Direct) Time
100,000 4.5900 [4.5879,4.5922] 0.0011 0.06 0.0238 0.04
400,000 4.5896 [4.5886,4.5907] 0.0006 0.23 0.0119 0.13

1,600,000 4.5897 [4.5891,4.5902] 0.0003 0.92 0.0059 1.19

Barrier option under CGMY model

The payoff function of barrier option with m monitoring time points is

(ST −K)+1{L≤St1 ...Stm≤U},

where St = S0eXt and 0 < t1 < .. . < tm < T . According to the Parseval’s Theorem,
the option price is equal to

e−rT

(2π)m+1

∫
Rm+1

F [g](iRRR−uuu)F [p](uuu− iRRR)duuu,

where uuu = (u1, . . . ,um+1), RRR = (0, . . . ,0,R),

F [g](iRRR−uuu) =
e(−ium+1−R+1) lnK

(ium+1 +R−1)(ium+1 +R)
e(ium+1−ium+R) lnU − e(ium+1−ium+R) lnL

ium+1− ium +R

e(ium−ium−1) lnU − e(ium−ium−1) lnL

ium− ium−1
· · · e

(iu2−iu1) lnU − e(iu2−iu1) lnL

iu2− iu2

and F [p](uuu− iRRR) = eiu1 lnS0
[ m

∏
j=1

φ∆ (u j)
]
φ∆ (um+1− iR).

We use parameters C = 1, G = 5, M = 5, Y = 1.5, r = 0.1, s = 100, K = 100, T =
2, U = 105, L = 95 and calculate the price of the barrier option when there is
only one monitoring time at t = 1. The benchmark price calculated by numerical
integration is 9.5880. We use the method described in Section 2 with the importance
sampler of the form

h(u1,u2) =
1

2θ
1/α1
1 Γ (1+ 1

α1
)

e−
|u1 |

α1
θ1

1

2θ
1/α2
2 Γ (1+ 1

α2
)

e−
|u2 |

α2
θ2

where α1 = 1.5, θ1 = 0.9, α2 = 1.5, θ2 = 0.25 and the damping factor R = 1.06.
The results are presented in Table 3.
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Table 3 Barrier option in CGMY model, exponential power IS (α1 = 1.5, θ1 = 0.9, α2 = 1.5, θ2 =
0.25, R = 1.06)

No. of simulation Price 95%-interval RMSE Time(s)
6,400,000 2.3113 [2.1012,2.5214] 0.1072 9.13
25,600,000 2.3399 [2.2349,2.4450] 0.0536 36.65
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